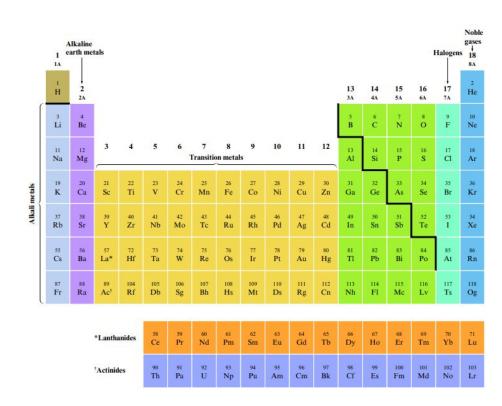
Lesson 3: Atoms, Molecules, and Ions

Periodic Table

Layout of the periodic table

Groups: columns

Periods: rows

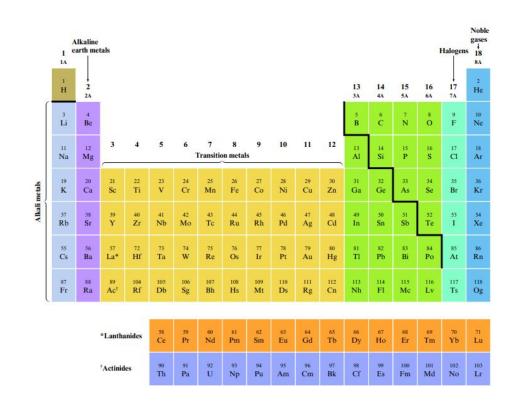

Group 1: alkali metals (except hydrogen)

Group 2: alkaline earth metals

Group 3-12: transition metals

Group 17: Halogens

Group 18: Noble gases


Periodic Table

Most of the elements in the periodic table are actually metals!

 Hydrogen and the elements to the right of the staircase are non metals

Properties

- Metals: good conductors of heat/electricity, malleable, ductile, lustrous
- Nonmetals: lack the properties of metals
 - Covalent bonds with other nonmetals
 - Ionic bonds with metals

Type I:

- Cation named first, anion second
- Cation: element name (e.g., Na⁺ is sodium)
- Anion: root name + "-ide" (e.g., Cl⁻ is chloride)
- Examples:
 - NaCl: Sodium chloride
 - CaS: Calcium sulfide

Type II:

- Cation charge specified with Roman numeral; e.g., Fe²⁺ is Iron(II)
- Examples:
 - FeCl₂: Iron(II) chloride
 - CuO: Copper(II) oxide

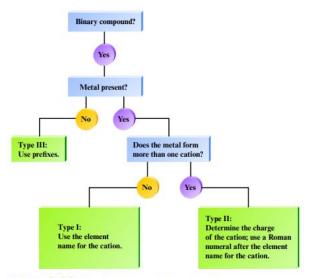
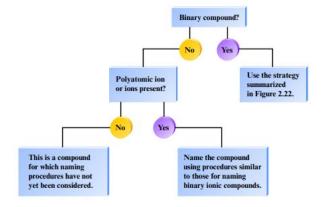



FIGURE 2.22 A flowchart for naming binary compounds.

Question 1: Name the following binary ionic compounds

- a. KBr
- b. MgO

Question 2: Write the formula for the following binary ionic compounds

- a. Barium chloride
- b. Aluminum oxide

Question 3: Identify whether the following compounds are Type I or Type II, and then name them

- a. Fe_2O_3
- b. CuCl₂

Monatomic Cations: Na⁺, Ca²⁺, Al³⁺, Fe²⁺/Fe³⁺

Monatomic Anions: Cl⁻, O²⁻, N³⁻

Polyatomic lons:

- NH₄⁺ (Ammonium)
- NO_3^- (Nitrate)
- SO₄²- (Sulfate)
- Examples:
 - NaNO₃: Sodium nitrate
 - NH₄CI: Ammonium chloride
 - CaSO₄: Calcium sulfate

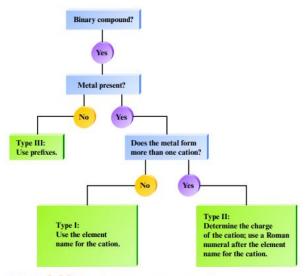
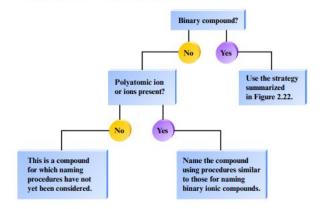



FIGURE 2.22 A flowchart for naming binary compounds.

Polyatomic Ions - Full List

Acetate Ion: C₂H₃O₂ Carbonate Ion: CO₃²

Chlorate Ion: CIO₃⁻ Chromate Ion: CrO₄²⁻

Cyanide Ion: CN⁻ Sulfate Ion: SO₄²⁻

Hydroxide Ion: OH⁻ Phosphate Ion: PO₄³⁻

Nitrate Ion: NO₃⁻ Ammonium Ion: NH₄⁺

Permanganate Ion: MnO₄ Hydronium Ion: H₃O⁺

Question 1: Name the following compounds

- a. RbNO₃
- b. NH₄CI
- c. CaSO₄

Question 2: Write the formula for the following compounds

- a. Ammonium sulfate
- b. Calcium carbonate

Question 3: Identify the type of ion (monatomic or polyatomic) and provide its charge

- a. NO₃
- b. Fe₃⁺

Naming Binary Covalent Compounds

- First element full name
- Second element as anion (-ide)
- 3. Prefixes denote number of atoms
- Examples:
 - CO: Carbon monoxide
 - SF₆: Sulfur hexafluoride

Prefixes:

- Mono- (1), Di- (2), Tri- (3)
- Tetra- (4), Penta- (5), Hexa- (6)

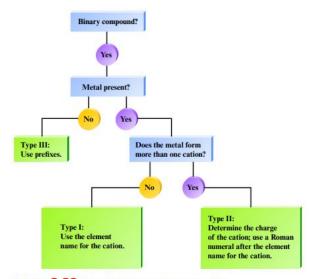
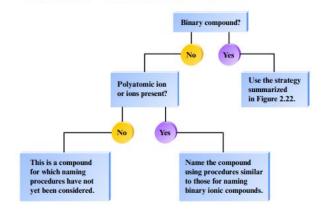



FIGURE 2.22 A flowchart for naming binary compounds.

Naming Binary Covalent Compounds

Question 1: Name the following binary covalent compounds

- a. CO₂
- b. N₂O₅

Question 2: Write the formula for the following binary covalent compounds

- a. Dinitrogen trioxide
- b. Phosphorus pentachloride

Question 3: Identify the prefix and the number of atoms it represents

- a. Tetra-
- b. Hexa-

Naming Acids

Without Oxygen:

- Hydro- + anion root + -ic acid
- Example:
 - HCI: Hydrochloric acid

With Oxygen:

- Anion ends in -ate: root + -ic acid
- Anion ends in -ite: root + -ous acid
- Examples:
 - o H₂SO₄: Sulfuric acid
 - H₂SO₃: Sulfurous acid

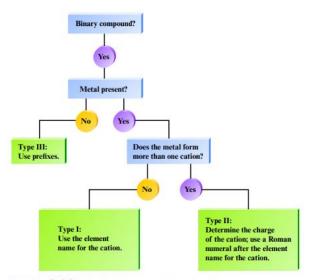
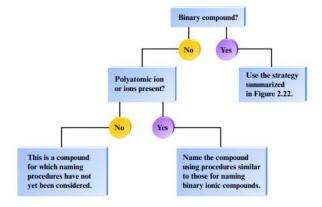



FIGURE 2.22 A flowchart for naming binary compounds.

Naming Acids

General Rules:

- Base Name: Standard form of the ion (e.g., sulfate: SO₄²⁻)
- One More Oxygen: Prefix "per-" and suffix "-ate" (e.g., perchlorate: ClO₄⁻)
- One Less Oxygen: Suffix "-ite" (e.g., chlorite: ClO₂⁻)
- Two Less Oxygens: Prefix "hypo-" and suffix "-ite" (e.g., hypochlorite: CIO-)

Adding Hydrogen:

Bi-/Hydrogen Prefix: When a hydrogen is added (e.g., bicarbonate: HCO₃⁻)

Naming Acids

Question 1: Name the following acids

- a. HCl (without oxygen)
- b. $HCIO_{4}$ (with oxygen)

Question 2: Write the formula for the following acids

- a. Chloric acid
- b. Hypochlorous acid

Question 3: Based on the rules, name the following compounds

- a. H₂SO₄
- b. HClO₂
- c. HCO₃

Atomic Masses

Mass spectrometer used to determine accurate atomic masses

- Atoms/molecules converted to positive ions
- Ions accelerated and deflected by magnetic field
- Deflection depends on ion mass; less massive ions deflected more

Example: ¹²C vs ¹³C ratio

The Mole

The mole (mol) is the unit for counting atoms, based on the number of atoms in exactly 12 g of ¹²C

Avogadro's Number: 6.022×10²³ (number of atoms in 12 g of ¹²C)

⇒ units of a substance

Analogy:

- 1 mole of eggs = 6.022×10^{23} eggs
- 1 mole of atoms/molecules is manageable for reactions

TABLE 3.1 | Comparison of 1-Mole Samples of Various Elements

Element	Number of Atoms Present	Mass of Sample (g
Aluminum	6.022×10^{23}	26.98
Copper	6.022×10^{23}	63.55
Iron	6.022×10^{23}	55.85
Sulfur	6.022×10^{23}	32.07
lodine	6.022×10^{23}	126.9
Mercury	6.022×10^{23}	200.6

Molar Mass

Molar mass: is the mass in grams of 1 mole of the compound

Example: Methane (CH₄)

- Mass of 1 mole of carbon: 12.01 g
- Mass of 4 moles of hydrogen: 4×1.0084g
- Molar mass of methane: 12.01 + 4(1.0084g) = 16.04 g

Molar Mass

Question 1: How many atoms are there in 10.0g of Al? (1 mol of Al is 26.98 g)

Question 2: How many moles are there in 5.00×10^{20} atoms of Co?

Molar Mass

Question 1: Isopentyl acetate ($C_7H_{14}O_2$) is the compound responsible for the scent of bananas. Bees release about 1 µg this compound when they sting. How many molecules of isopentyl acetate are released in a typical bee sting? How many atoms of carbon are present?