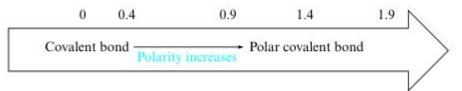
Lesson 11 Bonding

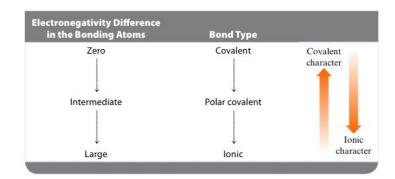
Electronegativity

The ability of an atom in a molecule to attract shared electrons to itself

							In	creasing	g electro	negativi	ty						
	Li	Be			H 2.1								B 2.0	C 2.5	N 3.0	O 3.5	1 4
ĺ	1.0 Na 0.9	1.5 Mg											Al 1.5	Si 1.8	P 2.1	S 2.5	C1 3.0 Br
İ	K	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	2.8
ł	0.8 Rb	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
	0.8 Cs 0.7	Ba 0.9	La-Lu 1.0-1.2	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	T1 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.2
	Fr 0.7	Ra 0.9	Ac 1.1	Th 1.3	Pa 1.4	U 1.4	Np-No 1.4-1.3										


Difference in electronegativity affects the polarity and ionic character of a bond

Electronegativity


Small differences in EN - nonpolar covalent bond

Medium differences in EN - polar covalent bond

Large differences in EN - ionic bond

 Dipole moments are formed when there is a partial positive and negative charge in a molecule

Method for showing how valence electrons are arranged around atoms in a molecule → most important goal is for atoms to achieve a full octet

- Hydrogen duet rule, sharing 2 electrons
- Noble gases do not form bonds
- Other nonmetals: octet rule

Cations and anions have different Lewis structures than their neutral forms

He:

Steps to Draw Lewis Structures

- 1. Count total valence electrons (include positive/negative charges)
- 2. Write skeletal structure (central atom is usually least EN element)
- 3. Distribute electrons to outer atoms
- 4. Place remaining electrons on the central atom
- 5. Form double or triple bonds if necessary
- 6. Check formal charges (must be as close to 0 as possible)
- 7. Finalize the structure

Give the Lewis structure for each molecule:

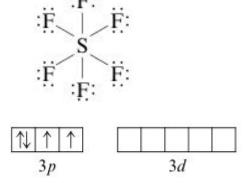
a. HF

 $\mathrm{d.}\;\mathrm{CH_4}$

b. N₂

e. CF₄

c. NH₃


f. NO⁺

Exceptions to octet rule:

Boron tends to form three bonds, ex. BF₃

- Some atoms exceed the octet rule (Period 3 elements and beyond), ex. SF₆
 - This is due to the empty 3d orbitals which can be used to place extra electrons for bonds

35

Give the Lewis structure for each molecule:

a. CIF₃

 $\mathsf{d.} \ \mathsf{BeCl}_2$

b. XeO₃

e. ICl_4^-

c. RnCl₂

Resonance

Formal charge - difference between number of valence electrons of free atom and the number of valence electrons of atom in the molecule

$$FC = V - N - \frac{B}{2}$$

Use the equation to determine the formal charge of nitrogen in NO₂⁻

FC = formal charge

V = number of valence electrons

N = number of nonbonding valence electrons

B = total number of electrons shared in bonds

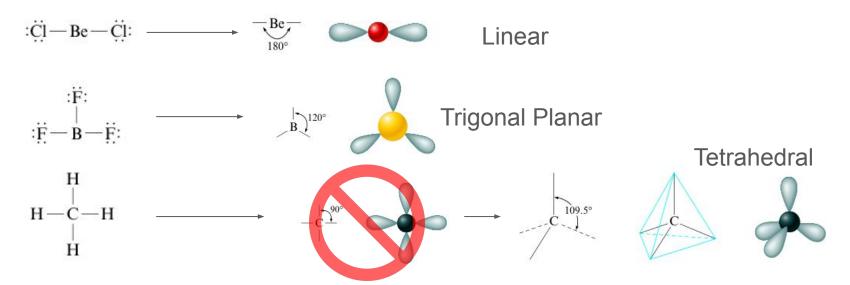
Other method to determine formal charge:

- 1. Count the number of things attached to an atom
- 2. FC = neutral VE things attached

Resonance

Occurs when more than one valid Lewis structure can be written for a particular molecule

Resonant structures form very stable molecules

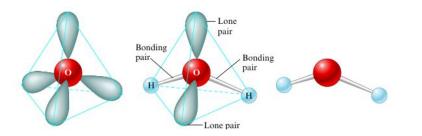

Double headed arrows represent resonant structures

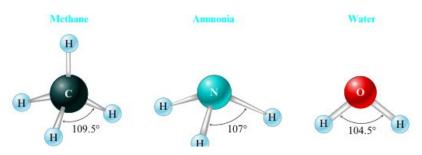
Ex. Draw the resonance structures for O₃

Molecular Structure

Valence Shell Electron Pair Repulsion (VSEPR) model - geometry that limits the repulsion between atoms in a molecule

How can we make atoms as far away from each other?




Molecular Structure

Lone pairs also affect the structure of atoms in VSEPR

 Electrons have lots of repulsion so they will repel other atoms and change the bond angles

Ex. H₂O - tetrahedral form with 2 lone pairs → Bent

Compare bond angles of tetrahedral structures with different numbers of lone pairs

Molecular Structure

VSEPR Theory Chart

Number of Electron Groups	Lone Pairs = 0	Lone Pairs = 1	Lone Pairs = 2	Lone Pairs = 3	Lone Pairs = 4
2	Linear				
3					
	Trigonal Planar	Angular or Bent			
4					
	Tetrahedral	Trigonal Pyramidal	Angular or Bent		
5	Trigonal Bipyramidal	Seesaw	T-shaped	Linear	
	підопаі віругаіпідаї	seesaw	1-snaped	Linear	
6	Octahedral	Square Pyramidal	Square Planar	T-shaped	Linear
	Octanedrai	Square Fyramidai	Square Planar	i-siiaped	Lillear

Give the name for the following molecules and predict their VSEPR structures:

- a. XeF₄
- b. CIF₃
- c. PCI₅
- d. BrF₅
- e. IF₇

ChemistryLearner.com